I ELECTRONICS

The biggest name
in little computers

MICRGCOGMPUTER

NEWSLETTER

Volume No. 4 — July 1979

MONITORS:

Those of you who have purchased a
TRS-80 system recently will have re-
ceived a different looking monitor
than was previously supplied. This
is only a styling change as both
units are electrically the same. The
new monitor will mount on the
expansion interface in the same
manner as the old one.

TRS-DOS VER 2.2:

TRS-DOS Version 2.2 has been re-
leased. It has several features not
found on Ver 2.1 including —

1. Renumbering as a DISKBASIC

command

2. Self test on memory and disk
drives

3. Re enter BASIC programs from
D.0.S.

4. APPEND and VERIFY changes

As well as the above changes there
are several new commands plus im-
provements to existing routines.

This new version for D.O.S. will fix
most unexplained problems. with
version 2.1; Disk 1/0 errors, lost data
during read, and back up problems.
Version 2.2 also has a modified
format routine which lets you format
a non-blank disk and has a key-
bounce routine which loads auto-
matically on switch on (Booting
D.0.S).

As with future versions of D.O.S.,
version 2.2. will be sent free of
charge to all owners of 26-1160 Disk
Drives.

SOFTWARE:

The following additional TRS-80
software has now arrived and is
available from your local Tandy
Store. If your store does not have an
item in stock, they will be happy to
order it for you.

26-2005 Level Il Course Part |

26-2006 Level |l Course Part || $29.95 (Level Il 16K)
26-1705 Advanced Statistical Analysis $69.95 (Level i)

The Level || Course is a two part tape
course which will guide you through
the Level 1l TRS-80.

$24.95 (Level Il)

Part | requires at least 4K or Memory
and Level Il. It assumes no previous
computer experience and takes the
user through the fundamental
commands required to write a
BASIC program using most of Level
II's commands.

Part Il is for the more advanced user
and deals with the more advanced
commands and concepts such as
arrays, strings and the use of
machine language subroutines.
Requires Level Il and 16K memory.

ok odkodk ok odk ok okokok

HINTS:

Due to the large number of TRS-80's
in use and growing number of users
groups, the question of program in-
terchangeability has been raised. As
you will know Level | programs can
be converted to Level Il and Level I
tape programs will run on disk
systems.

The only problem that could arise is
if a friend with a TRS-80 has a line
printer and you do not. There are
three ways to enable you to use a
program written for a TRS-80 line
printer.

1) Edit all lines that contain
LPRINT to become PRINT state-
ments — tedious and time consum-
ing if the program is very long.

2) Change the address of the line

printer driver so that all printer

output is sent to the video screen.

:{I’#e following line will accomplish
is.

10 POKE 16422, (PEEK(16414)):POKE 16423, [PEEK(16415))

3) Execute the following program
which will search memory for
LPRINT commands and change
them to PRINT commands.

30000 C = 15572B=MEM:A=C—B

30010 FORX=17120TO (17129 + A)

30020 IF PEEK (X) = 175 THEN POKE X, 178
30030 NEXTX -

30040 END

NOTES:

C = Memory size (available memory),
17129 represents the start address of
BASIC programs; 175 is the code for
LPRINT commands and 178 is the
code for PRINT commands. If you
have more (or less) memory the 16K
use the following value for C.

MEMORY CAPACITY “C="
4K 3284
16K 15572
32K 31956
48K 48340
APPENDING BASIC
PROGRAMS:

Those of you who make extensive
use of common subroutines must
have said to yourself “Why isn't
there some way that | can just load
these routines from tape and add
them to my program, instead of
typing them each time | need
them?”

Well it can be done! What you have
to do is to fool the CPU into thinking
it is loading a program into low
memory when in fact it is loading
into high memory. This is done by
moving the start of memory pointer
to point to the end of a resident
program and then performing a
‘CLOAD’. This can be done in the
following manner.

1. PRINT PEEK (16549):" *;PEEK(16548)E = 17129

2.§=E: E=PEEK(S +1)"256 + PEEK(S):IFE > @THEN 2
3. POKE 16549, INT(S/256): POKE 16548, S-INT(S/256)" 256
4. END

2) Run it and note the two values
printed on the screen (usually 66 and
233).

3) CLOAD the program that you
want to add.

4) From the keyboard POKE the
two values from (2) into locations
16549 and 16548.

The preceding steps can be
repeated as often as need be to load
in subroutines. The following points
should be observed:

a) Line numbers of added sub-
routines must be higher than the
resident program (if necessary use
the RENUMBER program 26-2004 to
renumber the finished program.)

b) Delete lines 1 - 4 before you
RUN your appended program.

c) This routine will not work with
D.O.S. systems.

WRONG!

In last month’s Newsletter there was
amistake in the Hint section dealing
with the line printer.

To check if the line printer is ready,
use the following:

Tandy’s Unique
“Live Keyboard”
Input Routine

Dress up your programs
with this unusual coding

The program reproduced on this page

will give you a considerable amount
of power and control over the
process of input to your programs.

This program, called INKEY, can re-
cognize the difference between
numeric and alphanumeric input. (By
the way, don’t confuse subroutine
INKEY with the BASIC command
INKEYS$, which it uses.)

For numeric input, the program will
not allow you to type a “bad”
number. For example, it keeps you
from putting a letter into numeric
field, or two decimal points, etc.

This kind of control can be used to
great advantage in computer-
assisted instruction programs and
other when the person doing the in-
put tends to make errors — ie,
people like you and me!

For quickest execution, this
subroutine should be near the begin-
ning of your program. Here’s how to
use it.

100 INS ="":W$ = INKEY$:W = 14:WD = 0:WS = WD:WL % = WD:IFFL = WDTHENFL =1
105 PRINTSTRINGS(ABS(FL),136);STRINGS(ABS(FL),24);
110 PRINTCHRS$(W);:FORW% = 1T025:W$ = INKEYS$:IFWS$ < > "’ THEN115ELSENEXT:
PRINTCHRS$(15);:FORW % = 1TO25:WSINKEYS:IFWS { > ""THEN 115ELSENEXT:GOTO110
115 PRINTCHRS$(W);:IFABS(FL) = WL% THEN125ELSEIFFL =>0ANDWS) ="
"ANDWS < ="Z"THEN170ELSEIFFL(OANDWS)"/” ANDWS(":"THEN170
117 IFW$=""THENPRINTWS;:WL% =WL% + 1:GOTO175
120 IFW$="."ANDWD = OTHENWD = 1:GOTO170
123 IF(W$="—"ORWS$=""+"JANDWS = 0ANDWL% = OTHENWS = 1:GOTO170
125 IFW$ <>CHRS$(8)THEN150ELSEIFWL% = 0THEN110ELSEPRINTCHRS(24)::IFFL)
OTHEN135ELSEIFPEEK(16418) = 44THEN140
130 IFPEEK(16418) = 46THENWD = 0:GOTO135ELSEIFPEEK(16418) = 430RPEEK(16418) =

45THENWS =0
135 IN$ = LEFTS(INS,LEN(INS) — 1)

140 WL% =WL% — 1:POKE16418,136:GOTO110
150 IFW$ = GHR$(24)THENPRINTSTRING$(WL % CHR$(24)):GOTO 100
1556 IFW$<> CHR$(13)THEN110ELSEPRINTSTRINGS$(ABS(FL) — WL%,32);

160 PRINTCHR$(15):W% = 25:NEXT:RETURN

170 PRINTWS;:INS = IN$ + WS:WL% =WL% + 1

175 IFABS(FL)=1THEN160ELSE110

First, place the cursor at the beginn-
ing of the input field on the screen.
Next, give a value to the flag variable
FL. Finally, execute a GOSUB 100
which sets INKEY into operation.

You assign a value to the variable FL
according to the following rules.

The numeric (or absolute) value of
FL is the maximum number of char-
acters INKEY will accept for input.
INKEY will take fewer than FL char-
acters, but not more.

If FL is positive, INKEY will expect
alphanumeric input. These
characters include everything from
the ‘‘space” (20 hexadecimal)
through the letter “Z” (5A hexa-
decimal).

If, however, you make FL negative,
INKEY will expect numeric input.
The acceptable numeric characters
are 0 through 9, +, —,. and comma.
INKEY will only accept one
+,—and.(decimal point). Any
number of commas may be typed,
but they are ignored by INKEY. The
keyboard will not respond to any
other characters during numeric
input.

Finally, if you make the numeric
(absolute) value of FL equal to 1, it
will not be necessary to press the
ENTER key after typing the accept-
able character. INKEY will just go
ahead and resume execution.

The information you type will return
to the calling program in the string
variable IN$. (By the way, if the input
was numeric, the contents of IN$
may be converied to the internal
computational form by using the
function VAL...e.g., Y = VAL (IN$.)

Another nice feature of INKEY is
that it “formats” the line for input. It
prints as many graphics block char-
acters as the maximum number of
characters it will accept, and then
places the cursor at the beginning of
the field.

This way, you get visual “feedback”
on how close you are to maximum
input as you type. You don't have to
count characters.

Of course our old friends backspace
(4@)— to erase the last character —
and shift/backspace—to erase the
entire line—still work as usual.

One last thing—INKEY is a copy-
righted program of Tandy and is
included here for the benefit of our
customers. This program should not
be reproduced or sold under any cir-
cumstances. Good luck and happy
computing!

	page1
	page2

